193 lines
7.1 KiB
Python
193 lines
7.1 KiB
Python
from models import Location
|
|
from db_connector import database,engine,db_session
|
|
import pandas as pd
|
|
import openmeteo_requests
|
|
import requests_cache
|
|
from retry_requests import retry
|
|
|
|
|
|
def initialize_database():
|
|
"""
|
|
A function to initialize the database by checking table availability and creating it if it does not exist.
|
|
"""
|
|
|
|
db_tables = ['locations']
|
|
# check table availability and create it if it does not exist
|
|
for tb in db_tables:
|
|
if not engine.dialect.has_table(engine.connect(), tb):
|
|
print("Creating table: {}\n".format(tb))
|
|
database.metadata.create_all(engine)
|
|
|
|
table_data = pd.read_csv ('./table_data/locations.csv', index_col=None, header=0)
|
|
for i in range(len(table_data)):
|
|
add_location(Location(name=table_data.loc[i, "Capital City"],
|
|
latitude=float(table_data.loc[i, "Latitude"]),
|
|
longitude=float(table_data.loc[i, "Longitude"]),
|
|
),
|
|
no_commit=True
|
|
)
|
|
db_session.commit()
|
|
|
|
def add_location(location:Location , no_commit=False):
|
|
"""
|
|
A function that adds a location to the database session.
|
|
|
|
Parameters:
|
|
location (Location): The location object to be added to the database session.
|
|
no_commit (bool): Flag indicating whether to commit the transaction immediately.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
db_session.add(location)
|
|
#print("Adding location: {}".format(location))
|
|
if not no_commit:
|
|
db_session.commit()
|
|
|
|
|
|
def delete_location(id):
|
|
"""
|
|
Deletes a location from the database based on the provided ID.
|
|
|
|
Parameters:
|
|
id (int): The ID of the location to be deleted.
|
|
|
|
Returns:
|
|
dict: A dictionary with the key "id" indicating that the location was successfully deleted.
|
|
"""
|
|
|
|
db_session.query(Location).filter(Location.id == id).delete()
|
|
db_session.commit()
|
|
return {"id": "Deleted"}
|
|
|
|
|
|
def chunkify_data(data, chunk_size):
|
|
"""
|
|
A function that chunks the input data into smaller pieces of the specified chunk size.
|
|
|
|
Parameters:
|
|
- data: the input data to be chunked
|
|
- chunk_size: the size of each chunk
|
|
|
|
Returns:
|
|
- A generator that yields chunks of the input data
|
|
"""
|
|
|
|
for i in range(0, len(data), chunk_size):
|
|
yield data[i:i + chunk_size]
|
|
|
|
|
|
def retrieve_weather_data(location_id=None):
|
|
"""
|
|
A function to retrieve weather data based on location IDs.
|
|
|
|
Parameters:
|
|
- location_id: an optional parameter to specify the location ID(s) to retrieve weather data for. If 'all' is provided, data for all locations is returned.
|
|
|
|
Returns:
|
|
- If location_id is not 'all' and any specified location ID does not exist, a dictionary of invalid location IDs is returned.
|
|
- If location_id is None, None is returned.
|
|
- If location_id is 'all', weather data for all locations is returned in a dictionary.
|
|
- Otherwise, weather data for the specified location IDs is returned in a dictionary.
|
|
"""
|
|
print('xaz')
|
|
max_id = db_session.query(Location).count()
|
|
|
|
#NOTE: Disable location check if location_id is 'all' (returns all locations), debugging purposes
|
|
if location_id != 'all':
|
|
loc_check = {}
|
|
for loc_id in location_id:
|
|
if loc_id > max_id:
|
|
loc_check[loc_id] = "The location does not exist"
|
|
print(len(loc_check))
|
|
if len(loc_check) > 0:
|
|
return {'error': loc_check}
|
|
|
|
print('az')
|
|
weather_data = {}
|
|
|
|
#NOTE: Get weather data for all locations if location_id is 'all' (debugging purposes), otherwise get weather data for specified locations
|
|
if location_id == 'all':
|
|
locations = list(chunkify_data(db_session.query(Location).all(),100))
|
|
else:
|
|
locations = list(chunkify_data(db_session.query(Location).filter(Location.id.in_(location_id)).all(),100))
|
|
print(locations)
|
|
for chunk in locations:
|
|
coordinates = [[loc.id, loc.latitude, loc.longitude, loc.name] for loc in chunk]
|
|
weather_data.update(get_openmeteo_data(coordinates))
|
|
#print(weather_data)
|
|
#exit(0)
|
|
return weather_data
|
|
|
|
def get_openmeteo_data(coordinates):
|
|
"""
|
|
Retrieves weather data from the OpenMeteo API for the given coordinates.
|
|
|
|
Parameters:
|
|
coordinates (list): List of tuples containing latitude, longitude, and location name.
|
|
|
|
Returns:
|
|
dict: A dictionary containing the retrieved weather data for each location.
|
|
"""
|
|
|
|
data_dict = {}
|
|
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
|
|
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
|
|
openmeteo_client = openmeteo_requests.Client(session = retry_session)
|
|
|
|
latitude = [coords[1] for coords in coordinates]
|
|
longitude = [coords[2] for coords in coordinates]
|
|
|
|
# NOTE: Uncomment to get all available weather data for each location
|
|
# data_names = [
|
|
# "weather_code", "temperature_2m_max", "temperature_2m_min",
|
|
# "apparent_temperature_max", "apparent_temperature_min",
|
|
# "sunrise", "sunset", "daylight_duration", "sunshine_duration",
|
|
# "uv_index_max", "uv_index_clear_sky_max", "precipitation_sum",
|
|
# "rain_sum", "showers_sum", "snowfall_sum", "precipitation_hours",
|
|
# "precipitation_probability_max", "wind_speed_10m_max",
|
|
# "wind_gusts_10m_max", "wind_direction_10m_dominant",
|
|
# "shortwave_radiation_sum", "et0_fao_evapotranspiration"
|
|
# ]
|
|
|
|
data_names = ["temperature_2m_max", "temperature_2m_min", "precipitation_sum"]
|
|
|
|
#NOTE: OpenMeteo API has a limit of 10000 requests per day,
|
|
# so in a production environment it would be wise to change to
|
|
# an enterprise account OR utilize the clients for the requests
|
|
url = "https://api.open-meteo.com/v1/forecast"
|
|
params = {
|
|
"latitude": latitude,
|
|
"longitude": longitude,
|
|
"daily": data_names
|
|
}
|
|
|
|
responses = openmeteo_client.weather_api(url, params=params)
|
|
|
|
for idx, response in enumerate(responses, start=1):
|
|
location = coordinates[idx-1][3]
|
|
idx = coordinates[idx-1][0]
|
|
|
|
daily = response.Daily()
|
|
|
|
daily_data = { variable: daily.Variables(i).ValuesAsNumpy().tolist()
|
|
if variable not in ["sunrise", "sunset"]
|
|
else daily.Variables(i).ValuesAsNumpy()
|
|
for i, variable in enumerate(data_names)
|
|
}
|
|
|
|
dates = pd.date_range(start = pd.to_datetime(daily.Time(), unit = "s", utc = True),
|
|
end = pd.to_datetime(daily.TimeEnd(), unit = "s", utc = True),
|
|
freq = pd.Timedelta(seconds = daily.Interval()),
|
|
inclusive = "left").tolist()
|
|
|
|
daily_data["date"] = [date.strftime("%d/%m/%Y") for date in dates]
|
|
daily_data["location_name"] = location
|
|
daily_data["resp_coordinates"] = [response.Latitude(), response.Longitude()]
|
|
|
|
data_dict[idx] = daily_data
|
|
|
|
return data_dict
|
|
|